
17

I International Scientific and Practical Conference
Theoretical and Applied Aspects of Device Development on

Microcontrollers and FPGAs
MC&FPGA-2019

DOI: 10.35598//mcfpga.2019.005

Organization Features of Parallel Processes in

Programs for Microcontrollers with a Small

Amount of Program Memory

Andrij Verygha

Department of the Radio Engineering and Information Security,

Yuriy Fedkovych Chernivtsi National University

Chernivtsi, Ukraine,
veriga@ukr.net

Abstract—A way of organizing parallel processes without

the use of real-time operating systems is described, which is

convenient for writing programs for microcontrollers with a

small size of program memory.

Keywords—microcontroller, program, parallel process

I. INTRODUCTION

Microcontrollers have found wide application in various
kinds of radio equipment. Depending on the design task,
microcontrollers can be used from the simplest models to the
edvanced, which have a significant number of peripheral
modules and a large amount of program memory.

The most popular programming languages for
microcontrollers is the assembler and C. The assembler
language's uncomfortabling is the compiler's dependence on
the kernel being used, among which the most popular are
PIC, AVR, 8051, and Cortex [1, 2, 3].

In terms of program portability, C / C ++ compilers are
more convenient. Using this language, various types of real-
time operating systems are written specifically for
microcontrollers (RTOS) [4, 5]. They allow you to
implement flexible interfaces with different peripherals
(displays, keyboards, memory cards, data ports, etc.) and
perform parallel processes.

Application of operations system requires a sufficient
amount of program memory (> 16 kilowords), which can
only be used in complex applications.

In simple applications, the use of expensive
microcontrollers is not appropriate. The volume of program
memory in this case may not be enough to accommodate the
operating system.

II. BRANCHED PROCESSES

Microcontrollers are used not as a separate unit, but as
the main controller of the device. It must interact with the
entire periphery connected to it. The knowledge and skills of
a programmer who writes programs for a computer differ for
the programmer of microcontrollers. The style of writing
programs is made with experience and years.

For beginners it is typical to use standard software
constructions. When organizing a branching of the program,
the nested (multi-level) condition statements (if-else, switch-

case) are used and often the operators of the unconditional
goto transition. Embedded cycles may also be present in
conditions and in other cycles. Here is an example of a
possible variant of the code of the program.

if (Menu)

 {

 if (ff_kl_buton_star) goto endMenu;

 if (menu==1)

 {

 ...

 if (ff_kl_buton_star) goto endMenu;

...

//- - - - - - - - - - - - - - - - - - -

 if (submenu==1)

 {

 …

 do

 {

 …

 if (!ff_kl_buton_star)

 {

 …

 if (Condition_1)

 {

 while (1)

 {

 ...

 if (Condition_2)

 {

 if (Condition_3)

 {

 ...

 }

wait:

 if (Condition_3) break;

 if (!ff_KeyRead) goto wait;

 if (Condition_4)

 {

 ...

 }

 else

 {

 ...

 }

 …

 }

18

I International Scientific and Practical Conference
Theoretical and Applied Aspects of Device Development on

Microcontrollers and FPGAs
MC&FPGA-2019

 else

 {

 ...

 break;

 }

 }

 }

 else

 {

 ...

 break;

 }

 }

 }

 while (!ff_kl_buton_star);

 break;

 }

//- - - - - - - - - - - - - - - - - - -

 if (submenu==2)

 {

 …

 }

//- - - - - - - - - - - - - - - - - - -

 if (menu==2)

 {

 …

 }

}

…

endMenu:
…

This design can be observed when organizing complex
multi-level menus. To exit the menu item or the menu at all,
you need to insert it in the checking program for a certain
condition (highlighted in bold). The output is complicated by
the presence of cyclic constructions.

When you exit the submenus of the menu sometimes
there is a need to restore certain settings. If the transition
after the recovery is always at the same point of the program,
then you can use the goto unconditional transfer operator to
part of the recovery code. From this place go to the given
point. If at different points - it will have to organize a
separate subroutine.

This approach leads to an increase in the number of
transfer marks, the allocation of the program code block with
curly braces ({}). The number of errors during the writing of
the program increases. This increases the time it is written. It
also complicates the process paralleling and interrupting, the
program's response to interrupt from the peripheral modules
of the microcontroller. For such an approach is inherent in
the redundancy of the code, correspondingly, the volume of
the program increases.

III. PROCESSING ACTION PROCESSOR

It is suggested to apply a slightly different approach to
building branched and parallel processes as a simplified
RTOS replacement.

In the program, enter a block (or procedure) that will
track signals from peripheral modules, interrupts, internal
program processes, signs of execution of program blocks,
prioritize, assign the required code of action. Let's name the

block of program PROCESSING ACTION PROCESSOR
(PAP). An example of building a program is given below.

while (1)

{

//PAP

…

//Actions

switch (Action)

 {

case 1:// Action 1.1

 {

 …

 break;

 }

case 2:// Action 1.2

 {

 …

 break;

 }

case 3:// Action 2

 {

 …

 break;

 }

…

default: break;

}

…
}

Actions are divided into more elementary. They should
be through-cross, it is desirable to avoid cyclic structures
inside the action. The PAP block and actions are performed
in an infinite loop. You can delay one action and give
permission to others, repeat the same action the required
number of times.

IV. CONCLUSION

Using the processor to process operations and split
actions into elementary operations simplifies the writing of
programs and reduces the program code volume after
compiling approximately 1.1-1.5 times (depending on the
optimization of the software code).

REFERENCES

[1] "8-Bit MCUs | Microchip Technology", Microchip.com, 2019.
[Online]. Available: https://www.microchip.com/design-centers/8-bit.
[Accessed: 18- Jun- 2019].

[2] "8051 Family - Nuvoton Direct", Nuvoton Direct, 2019. [Online].
Available: https://direct.nuvoton.com/en/8051-family/. [Accessed:
18- Jun- 2019].

[3] "Microcontrollers - STM32 Arm Cortex MCUs -
STMicroelectronics", St.com, 2019. [Online]. Available:
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-
bit-arm-cortex-mcus.html. [Accessed: 18- Jun- 2019].

[4] "Free RTOS for ST STM32 ARM Cortex-M3 microcontroller",
Freertos.org, 2019. [Online]. Available:
https://www.freertos.org/portstm32iar.html. [Accessed: 18- Jun- 2019].

[5] "FreeRTOS Kernel - The FreeRTOS kernel is an open source real
time operating system and the de-facto standard solution for
microcontrollers and small microprocessors - STMicroelectronics",
St.com, 2019. [Online]. Available: https://www.st.com/en/embedded-
software/freertos-kernel.html. [Accessed: 18- Jun- 2019].

