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I. INTRODUCTION 

Modern cryptography is the cornerstone of computer and 
communications security. Its foundation is based on various 
concepts of mathematics such as number theory, 
computational-complexity theory, and probability theory. 

It came out on top among several competitors and was 
officially announced in 2001 by the new AES encryption 
standard. The algorithm is based on several substitutions, 
permutations and linear transformations, each of which is 
performed on data blocks of 16 bytes, hence it takes its term 
“blockcipher”. These operations are repeated several times, 
called "rounds." During each round, a unique round key is 
calculated from the encryption key and is included in the 
calculation. Based on the AES block structure, modifying a 
single bit, either in the key or in the plaintext block, results in 
a completely different block of ciphertext - a clear advantage 
over traditional stream cipher methods. Finally, the 
difference between AES-128, AES-192, and AES-256 is the 
key length: 128, 192, or 256 bits — all radical improvements 
over the 56-bit DES key. And cracking a 128-bit AES key 
using a modern supercomputer will take longer than the 
estimated age of the universe. [1] 

II. AES STANDARD 

The more popular and widely adopted symmetric 
encryption algorithm likely to be encountered nowadays is 
the Advanced Encryption Standard (AES). It is found at least 
six time faster than triple DES. [1]  

A replacement for DES was needed as its key size was 
too small. With increasing computing power, it was 
considered vulnerable against exhaustive key search attack. 
Triple DES was designed to overcome this drawback but it 
was found slow.[1,2] 

The features of AES are as follows:  

 symmetric key and symmetric block cipher;  

 128-bit data, 128/192/256-bit keys;  

 stronger and faster than Triple-DES;  

 provide full specification and design details;  

 software implementable in C and Java. 

The Advanced Encryption Standard can be programmed 
in software or built with pure hardware. However Field 
Programmable Gate Arrays (FPGAs) offer a quicker, more 
customizable solution. This research investigates the AES 
algorithm with regard to FPGA and the Very High Speed 
Integrated Circuit Hardware Description language (VHDL). 
Altera Max+plus II software is used for simulation and 
optimization of the synthesizable VHDL code. All the 
transformations of both Encryptions and Decryption are 
simulated using an iterative design approach in order to 
minimize the hardware consumption. Altera ACEX1K 
Family devices are utilized for hardware evaluation.  

III. THE ALGORITHM 

A. Encryption 

The AES algorithm represents a data block in the form of 
a two-dimensional byte array of 4x4. All operations are 
performed on individual bytes of the array, as well as on 
independent columns and rows. In each round of the 
algorithm, the following transformations are performed: 

1. SubBytes operation, which is a tabular replacement of 
each byte of the data array 

2. The ShiftRows operation, which performs a cyclic left 
shift of all rows of the data array, with the exception of zero. 
Shift i-th row of the array (for i = 1,2,3) is performed on i 
byte. 

3. MixColumns operation. Performs multiplication of 
each data array column  by a fixed polynomial a(x): 

a (x) = 3x
3
 + x

2
 + x + 2. 

Multiplication is performed by modulo x
4
 + 1 

4. The AddRoundKey operation imposes a key material 
on the data array. Namely, on i -th column of the data array (i 
= 0 ... 3), a bit-by-bit logical exclusive or XOR operation, 
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superimposes a specific extended key word W4r + i, where r is 
the number of the current round of the algorithm, starting 
with 1. Before the first round of the algorithm, a preliminary 
key material is superimposed using the AddRoundKey 
operation, which overlays the clear four words of the 
extended key W0 ... W3 on the plaintext. 

The last round is different from the previous ones in that 
it does not perform the operation MixColumns. 

B. Decryption 

Decryption is performed using reverse operations in 
reverse order. Accordingly, before the first round of 
decryption, an AddRoundKey operation (which is the reverse 
of itself) is performed, performing overlay on the ciphertext 
of the last four words of the extended key, i.e. W4r ... W4r + 3. 
Then r decryption rounds, each of which performs the 
following transformations: 

1. The InvShiftRows operation performs a cyclic right 
shift of the last three rows of the data array by the same 
number of bytes that the ShiftRows operation was shifted 
during encryption. 

2. The InvSubBytes operation performs a table-by-byte 
reverse tabular replacement. 

3. The AddRoundKey operation, as well as when 
encrypting, imposes four words of the extended key W4r ... 
W4r + 3 on the processed data. However, the numbering of 
rounds r when decrypting is performed in the opposite 
direction - from r − 1 to 0. 

4. The InvMixColumns operation multiplies each column 
of the data array in the same way as the direct MixColumns 
operation, however, the multiplication is performed by the 
polynomial a

 − 1
 (x), defined as follows: 

a
 − 1

 (x) = Bx
3
 + Dx

2
 + 9x + E. 

Similar to encryption, the last decryption round does not 
include the InvMixColumns operation. 

C. Key extension 

AES uses encryption keys of three fixed sizes: 128, 192, 
and 256 bits. Depending on the key size, a specific variant of 
the AES algorithm may be referred to as AES-128, AES-192 
and AES-256, respectively. 

The task of the key expansion procedure is to form the 
necessary number of words of the extended key for their use 
in the AddRoundKey operation. As mentioned above, the 
“word” here means a 4-byte fragment of the extended key, 
one of which is used in the primary imposition of the key 
material and one by one in each round of the algorithm. 
Thus, in the process of key expansion, 4 ∗ (r + 1) is formed 
of words. 

Key expansion is performed in two stages, the first of 
which is the initialization of the words of the extended key 
(denoted as Wi): the first Nk (Nk is the size of the original 
encryption key K in words, that is, 4, 6 or 8) words  
Wi (t. e. i = 0 ... Nk − 1) are formed by their successive filling 
with key bytes. 

The following figure 1 represents complete hardware 
implementation of the both encryption and decryption with 
key generation modules. 

 

 

Fig. 1. Block Diagram of AES Hardware Implementation.  

 

Key Schedule Generation block can generate the required 
keys for the process with secret key and Clk2 as inputs; these 
generated keys are stored in internal ROM and read by 
Encryption/Decryption block for each round to obtain a 
distinct 128-bit key with Round counter, where 
Encryption/Decryption module takes 128-bit plaintext or 
ciphertext as input with respective to the Clk1 (If En=1 or 0 
process is encryption or decryption respectively). In order to 
distinguish the number of rounds, a 2-bit Key Length input is 
given to this module where 00, 01, 10 represents 10(128-bit 
key), 12(192- bit key), 14(256-bit key) rounds respectively, 
generates the final output of 128-bit cipher or plaintext. 

IV. CONCLUSION 

Optimized and Synthesizable VHDL code is developed 
for the implementation of both encryption and decryption 
process. Each program is tested with some of the sample 
vectors provided by NIST and output results are perfect with 
minimal delay. Therefore, AES can indeed be implemented 
with reasonable efficiency on an FPGA, with the encryption 
and decryption taking an average of 320 and 340 ns 
respectively (for every 128 bits). The time varies from chip 
to chip and the calculated delay time can only be regarded as 
approximate. Adding data pipelines and some parallel 
combinational logic in the key scheduler and round 
calculator can further optimize this design. 
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