
37

I International Scientific and Practical Conference
Theoretical and Applied Aspects of Device Development on

Microcontrollers and FPGAs
MC&FPGA-2019

DOI: 10.35598/mcfpga.2019.014

A VHDL Implemetation of the Advanced

Encryption Standard

Hanna Loban

Department of Computer Radio Engineering and Technical Information Security Systems

Kharkiv National University of Radio Electronics

Kharkiv, Ukraine
hanna.loban@nure.ua

Abstract—A new original approach to realization of AES

algorithm on FPGA is proposed. Problems of VHDL modeling

of AES ciphering and deciphering are considered.

Keywords—AES, triple DES, encryption, decryption, FPGA,

VHDL

I. INTRODUCTION

Modern cryptography is the cornerstone of computer and
communications security. Its foundation is based on various
concepts of mathematics such as number theory,
computational-complexity theory, and probability theory.

It came out on top among several competitors and was
officially announced in 2001 by the new AES encryption
standard. The algorithm is based on several substitutions,
permutations and linear transformations, each of which is
performed on data blocks of 16 bytes, hence it takes its term
“blockcipher”. These operations are repeated several times,
called "rounds." During each round, a unique round key is
calculated from the encryption key and is included in the
calculation. Based on the AES block structure, modifying a
single bit, either in the key or in the plaintext block, results in
a completely different block of ciphertext - a clear advantage
over traditional stream cipher methods. Finally, the
difference between AES-128, AES-192, and AES-256 is the
key length: 128, 192, or 256 bits — all radical improvements
over the 56-bit DES key. And cracking a 128-bit AES key
using a modern supercomputer will take longer than the
estimated age of the universe. [1]

II. AES STANDARD

The more popular and widely adopted symmetric
encryption algorithm likely to be encountered nowadays is
the Advanced Encryption Standard (AES). It is found at least
six time faster than triple DES. [1]

A replacement for DES was needed as its key size was
too small. With increasing computing power, it was
considered vulnerable against exhaustive key search attack.
Triple DES was designed to overcome this drawback but it
was found slow.[1,2]

The features of AES are as follows:

 symmetric key and symmetric block cipher;

 128-bit data, 128/192/256-bit keys;

 stronger and faster than Triple-DES;

 provide full specification and design details;

 software implementable in C and Java.

The Advanced Encryption Standard can be programmed
in software or built with pure hardware. However Field
Programmable Gate Arrays (FPGAs) offer a quicker, more
customizable solution. This research investigates the AES
algorithm with regard to FPGA and the Very High Speed
Integrated Circuit Hardware Description language (VHDL).
Altera Max+plus II software is used for simulation and
optimization of the synthesizable VHDL code. All the
transformations of both Encryptions and Decryption are
simulated using an iterative design approach in order to
minimize the hardware consumption. Altera ACEX1K
Family devices are utilized for hardware evaluation.

III. THE ALGORITHM

A. Encryption

The AES algorithm represents a data block in the form of
a two-dimensional byte array of 4x4. All operations are
performed on individual bytes of the array, as well as on
independent columns and rows. In each round of the
algorithm, the following transformations are performed:

1. SubBytes operation, which is a tabular replacement of
each byte of the data array

2. The ShiftRows operation, which performs a cyclic left
shift of all rows of the data array, with the exception of zero.
Shift i-th row of the array (for i = 1,2,3) is performed on i
byte.

3. MixColumns operation. Performs multiplication of
each data array column by a fixed polynomial a(x):

a (x) = 3x
3
 + x

2
 + x + 2.

Multiplication is performed by modulo x
4
 + 1

4. The AddRoundKey operation imposes a key material
on the data array. Namely, on i -th column of the data array (i
= 0 ... 3), a bit-by-bit logical exclusive or XOR operation,

38

I International Scientific and Practical Conference
Theoretical and Applied Aspects of Device Development on

Microcontrollers and FPGAs
MC&FPGA-2019

superimposes a specific extended key word W4r + i, where r is
the number of the current round of the algorithm, starting
with 1. Before the first round of the algorithm, a preliminary
key material is superimposed using the AddRoundKey
operation, which overlays the clear four words of the
extended key W0 ... W3 on the plaintext.

The last round is different from the previous ones in that
it does not perform the operation MixColumns.

B. Decryption

Decryption is performed using reverse operations in
reverse order. Accordingly, before the first round of
decryption, an AddRoundKey operation (which is the reverse
of itself) is performed, performing overlay on the ciphertext
of the last four words of the extended key, i.e. W4r ... W4r + 3.
Then r decryption rounds, each of which performs the
following transformations:

1. The InvShiftRows operation performs a cyclic right
shift of the last three rows of the data array by the same
number of bytes that the ShiftRows operation was shifted
during encryption.

2. The InvSubBytes operation performs a table-by-byte
reverse tabular replacement.

3. The AddRoundKey operation, as well as when
encrypting, imposes four words of the extended key W4r ...
W4r + 3 on the processed data. However, the numbering of
rounds r when decrypting is performed in the opposite
direction - from r − 1 to 0.

4. The InvMixColumns operation multiplies each column
of the data array in the same way as the direct MixColumns
operation, however, the multiplication is performed by the
polynomial a

 − 1
 (x), defined as follows:

a
 − 1

 (x) = Bx
3
 + Dx

2
 + 9x + E.

Similar to encryption, the last decryption round does not
include the InvMixColumns operation.

C. Key extension

AES uses encryption keys of three fixed sizes: 128, 192,
and 256 bits. Depending on the key size, a specific variant of
the AES algorithm may be referred to as AES-128, AES-192
and AES-256, respectively.

The task of the key expansion procedure is to form the
necessary number of words of the extended key for their use
in the AddRoundKey operation. As mentioned above, the
“word” here means a 4-byte fragment of the extended key,
one of which is used in the primary imposition of the key
material and one by one in each round of the algorithm.
Thus, in the process of key expansion, 4 ∗ (r + 1) is formed
of words.

Key expansion is performed in two stages, the first of
which is the initialization of the words of the extended key
(denoted as Wi): the first Nk (Nk is the size of the original
encryption key K in words, that is, 4, 6 or 8) words
Wi (t. e. i = 0 ... Nk − 1) are formed by their successive filling
with key bytes.

The following figure 1 represents complete hardware
implementation of the both encryption and decryption with
key generation modules.

Fig. 1. Block Diagram of AES Hardware Implementation.

Key Schedule Generation block can generate the required
keys for the process with secret key and Clk2 as inputs; these
generated keys are stored in internal ROM and read by
Encryption/Decryption block for each round to obtain a
distinct 128-bit key with Round counter, where
Encryption/Decryption module takes 128-bit plaintext or
ciphertext as input with respective to the Clk1 (If En=1 or 0
process is encryption or decryption respectively). In order to
distinguish the number of rounds, a 2-bit Key Length input is
given to this module where 00, 01, 10 represents 10(128-bit
key), 12(192- bit key), 14(256-bit key) rounds respectively,
generates the final output of 128-bit cipher or plaintext.

IV. CONCLUSION

Optimized and Synthesizable VHDL code is developed
for the implementation of both encryption and decryption
process. Each program is tested with some of the sample
vectors provided by NIST and output results are perfect with
minimal delay. Therefore, AES can indeed be implemented
with reasonable efficiency on an FPGA, with the encryption
and decryption taking an average of 320 and 340 ns
respectively (for every 128 bits). The time varies from chip
to chip and the calculated delay time can only be regarded as
approximate. Adding data pipelines and some parallel
combinational logic in the key scheduler and round
calculator can further optimize this design.

REFERENCES

[1] Tilborg, Henk C. A. van. “Fundamentals of Cryptology: A

Professional Reference and Interactive Tutorial”, New York Kluwer
Academic Publishers, 2002.

[2] Peter J. Ashenden, “The Designer's Guide to VHDL”, 2nd Edition,
San Francisco, CA, Morgan Kaufmann, 2002.

[3] Joan Daemen and Vincent Rijmen, The Design of Rijndael, AES -
The Advanced Encryption Standard, Springer-Verlag 2002 (238 pp.).

