
26

II International Scientific and Practical Conference
Theoretical and Applied Aspects of Device Development on

Microcontrollers and FPGAs
MC&FPGA-2020

DOI: 10.35598/mcfpga.2020.008

The Use of Percepio Tracealyzer for the

Development of FreeRTOS-based Applications

Maksym Khomenko

ORCID 0000-0001-9084-3527

EMT Department

Bonn-Rhein-Sieg University of Applied Sciences

Sankt-Augustin, Germany
maksym.khomenko@h-brs.de

Oleksandr Velihorskyi
ORCID 0000-0002-8256-7339

Biomedical radioelectronic apparatus and system department

Chernihiv National University of Technology

Chernihiv, Ukraine
oleksandr.veligorsky@inel.stu.cn.ua

Abstract—This paper discusses some problems of

development and testing of FreeRTOS-based application. The

use of Tracealyzer software tool is proposed to make this

process more convenient. The benefits of such usage have been

shown on typical issues that can be met in development and

debug phase.

Keywords—microcontroller, RTOS, debug, embedded system,

tracealyzer.

I. INTRODUCTION

Microcontrollers play a key role in the majority of
nowadays embedded systems. Among the variety of 8-, 16-
and 32-bit microcontrollers the last ones (which mostly have
an ARM core) take a dominant position in the embedded
world [1]. They usually have more memory, different
peripheral modules and of course higher frequencies and
computational power compared to 8- and 16-bit
microcontrollers for the reasonable price. The software of
embedded systems also becomes more complex and often
utilizes real time operational system (RTOS) such as
FreeRTOS [1, 2] to gain flexibility and multitasking.
However the development, test and debug of RTOS-based
programs brings a new challenges to the software design
engineers. Some of these challenges are task
synchronization, resources sharing between tasks, task
priority management and other.

Helping engineers to make the development and debug
process less problematic Swedish company Percepio have
developed software tool Percepio Tracealyzer. This tool
together with library which should be linked with
FreeRTOS-based program, visualize all the objects and
events inside operational system that makes understanding of
program flow and debug process easier and convenient

II. TRACEALYZER MAIN CONCEPTS

The tool consists of two separate parts as it is mentioned
above: the trace recorder C library and main program with
graphical user interface. The library is to be compiled with
user FreeRTOS-based program for the target platform. It
includes three configuration header files (trcConfig.h,
trcSnapshotConfig.h and trcStreamingConfig.h) that can be
used to set up one of two recorder mods of operation and
various parameters of data tracing. One mode of operation is
called “Streaming” in this mode the data collection and
visualization is performed in real time. Collected data are
constantly transmitted to the computer for the visualization

through some communication interface (USB or Ethernet) or
through hardware debugger (not all debuggers are
supported). Another mode of operation is called “Snapshot”
in this mode data are stored in the previously allocated
(statically or dynamically) memory buffer on the target
device and can be read to the computer trough any hardware
debugger tool. The detailed description of how to include
this library to custom FreeRTOS-based project and setup
preferable tracing mode are given in [3].

The Tracealyzer itself is a powerful tool of RTOS data
analysis. It contain huge batch of different views that can be
open and allocated at the screen as part of main program or
as separate window. So, the detailed description of all views
can’t be done in the scope of this paper. However most
commonly used views are present in the Fig. 1.

Trace view (marked with a green frame in the Fig. 1)
shows all tasks and RTOS events on the time line. It gives
major information about system behavior. CPU load graph
(marked with a yellow frame in the Fig. 1) represents
information about CPU usage by different tasks in time.
Selection details window (marked with a blue frame in the
Fig. 1) shows some major parameters of the task slice or
system event selected in the Trace view. Filter window
(marked with a violet frame in the Fig. 1) can be used to
enable or disable single objects or service events on other
views of Tracealyzer. Such possibility makes inspection of
the program flow more convenient because information that
have no interest for the current analysis can be switch off.
The brown frame in the Fig.1 shows different time related
parameters of the tasks, the parameter of interest can be
selected from the drop-down menu of this window
(execution time parameter is selected in the Fig.1). Toolbar
panel is placed on the left side of the main program window
(red frame in the Fig. 1). It provides quick access to all other
possible views of the program which also can be found in
“Views” menu. In addition, toolbar contains control buttons
that are used to start/stop streaming in streaming mode and to
make snapshot in snapshot mode.

Concerning selection of the operation mode is depend on
the purpose of analysis. In development or in debugging
phase for the easily reproduced bugs the snapshot mode can
be used. Its main drawback is relatively short time period
(usually some seconds) that can be stored due to device
RAM limitation. On the other hand streaming mode of
operation can be used when long time period should be

27

II International Scientific and Practical Conference
Theoretical and Applied Aspects of Device Development on

Microcontrollers and FPGAs
MC&FPGA-2020

stored for analysis. Consequently this mode is useful for the debugging of randomly and rare appeared bugs.

Fig. 1. Percepio Tracealyzer window layout

III. TRACEALYZER USE CASES

All use cases listed in this section utilize the Nucleo-F429
board (build on STM32F429 microcontroller) as a hardware
base. Also all data traces have been taken in snapshot mode.

A. Periodicity of Task Execution

In RTOS-based programs most of the tasks do not need
to run all the time. Usually they are triggered by other tasks
and interrupts or use RTOS time management API functions
to execute periodically and then go back to the blocked state
till the next synchronization event. The demand of task
execution period stability can be different for various tasks.
For example, in control application the data sampling task
should have low jitter to avoid system performance
degradation [4].

FreeRTOS has two API functions to perform time delay:
vTaskDelay() for the tasks where period jitter is not critical,
vTaskDelayUntil() for the tasks with strict requirements to
the period stability [2].

To compare the results of using different time delay API
functions the test program was developed. It has two tasks
one of which uses vTaskDelay() and other uses
vTaskDelayUntil(). Both tasks have same time delay value
(150 ms) and the same priority. The resulting periodicity of
tasks execution is shown in the Fig. 2 (a). The first task
shows stable period of execution as expected, while the
second task has variations and shift in period due to use of
simple vTaskDelay() API function which does not take in to
account the time of task execution.

Fig. 2 (b) shows the results of the same program but with
slightly changed conditions. Now the second task has priority
higher than the first one. Despite the fact that the first task
uses vTaskDelayUntil() function to provide a stable period it

suffer from period deviation at the times when it overlap
with the second task having higher priority.

In the real system such inaccuracy in priority assignment
can lead to the tricky bug in system behavior. But as it is
shown in the Fig. 2 using Tracealyzer helps easily find this
problem early in the development stage.

B. Mutual Execution Problems Accessing Shared

Resources

In the multitasking system a special care should be taken
when tasks want to access shared resources (this can be
global variables, peripheral modules internal or external) to
prevent simultaneous change of such resources from
different tasks.

One of the commonly used approaches treating this issue
in RTOS is to protect the access to shared resource with
special mechanism called mutex (abbreviation of mutual
execution). Each task before doing something with shared
resource should take a mutex that protect this resource. If the
mutex is successfully taken than task can access the resource
but if not this means that some other task has already gain
access to it and the first one should wait or skip the actions
with such resource. When task finishes actions with shared
resource it should give the mutex so that other tasks waiting
for this resource can gain an access to it.

In the FreeRTOS mutex is a special type of binary
semaphore therefore an API function for taken a mutex is
xSemaphoreTake() and API function for given a mutex is
xSemaphoreGive().The potential issue using mutex is
possibility of so called “Deadlock”. “Deadlock” occurs when
two (or more) tasks can’t continue execution because they
are waiting for the resources held by each other. Fig. 3
illustrates such kind of situation that has occurred with two
tasks and two mutexes.

28

II International Scientific and Practical Conference
Theoretical and Applied Aspects of Device Development on

Microcontrollers and FPGAs
MC&FPGA-2020

Fig. 2. Periodicity of tasks execution when tasks priority is equal (a) and when task1 has lower priority than task2 (b)

Test program showing this issue was developed. It
consist of two tasks with equal priority that shares two
resources global array and UART peripheral module and use
two mutexes respectively. The first task 1 writes the message
to the UART and fill global array with pseudo random
numbers. The second task also writes the messages to the
UART, and calculates the sum of array elements. At some
point task 1 tries to get access to the UART while it is used
by task 2. As the result the terminal stops displaying any
messages (see Fig. 4). But what is the reason of such
behaviour, how to find the roots of this problem? The
Tracealyzer can help to find the solution.

Fig. 3. Example of Deadlock situation with two tasks and two mutexes

From the trace view shown in the Fig. 5 can be clearly
seen that both tasks stop the execution. Also there is shown
“Mutex ownership diagram” next to the tasks on the trace
view which were activated through “Intervals and State
Machines” view by selecting diagrams of interest from the
predefined ones. This diagrams shows that both mutexes are
not free from the moment of tasks stop and till the end of
trace. Global array access mutex is held by the first task
while UART access mutex is held by the second task.

Fig. 4. UART messages from the test program in terminal window

Such analysis of system behaviour definitely shows that
the “Deadlock” has occurred in the program. And now when
the problem has been identified and localized it can be
solved by the means of tasks logic reorganization in the part
where they interact with mutexes getting access to shared
resources.

IV. CONCLUSIONS

This paper discusses some issues that can be met by the
embedded system developers dealing with the FreeRTOS
and multitasking environment. The Tracealyzer software is
proposed as useful tool that can make development and
debug processes easier and faster. The benefits of this
software tool have been proved on examples where it helps
to figure out the problems with periodicity of task execution
and “Deadlock” state of two tasks using shared resources and
mutexes. As the result, Percepio Trasealyzer can be
recommended to be used not only in development process
but also in education courses for embedded system
engineers.

REFERENCES

[1] References“2019 Embedded Markets Study. Integrating IoT and
Advanced Technology Designs, Application Development &
Processing Environments.”, Embedded.com, 2020. [Online].
Available: https://www.embedded.com/wp-
content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Mar
kets_Study.pdf. [Accessed: 20- Jun- 2020]

[2] R. Barry, “Mastering the FreeRTOS™ Real Time Kernel A Hands-
On Tutorial Guide”, Freertos.org, 2020. [Online]. Available:
https://freertos.org/Documentation/161204_Mastering_the_FreeRTO

 (a) (b)

https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://freertos.org/Documentation/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf

29

II International Scientific and Practical Conference
Theoretical and Applied Aspects of Device Development on

Microcontrollers and FPGAs
MC&FPGA-2020

S_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf. [Accessed:
20- Jun- 2020].

[3] “Quick Start Guide – Tracealyzer for FreeRTOS”, Freertos.org, 2020.
[Online]. Available: https://percepio.com/gettingstarted-freertos/.
[Accessed: 20- Jun- 2020].

[4] P. Marti, J.M. Fuertes, G. Fohler, K. Ramamritham, “Jitter
compensation for real-time control systems”, Proceedings 22nd IEEE
Real-Time Systems Symposium (RTSS 2001), December 2001,
pp 39-48.

.

Fig. 5. Trace view of program with “Deadlock”

https://freertos.org/Documentation/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf
https://percepio.com/gettingstarted-freertos/

