
36

II International Scientific and Practical Conference
Theoretical and Applied Aspects of Device Development on

Microcontrollers and FPGAs
MC&FPGA-2020

DOI: 10.35598/mcfpga.2020.011

Fuzzy Logic Custom Instruction Set

for NIOS II Processor

Sergey A. Ivanets

ORCID 0000-0002-9587-0783

Department of Biomedical Radio-

Electronic Devices and Systems

Chernihiv National University of

Technology

Chernihiv, Ukraine

Sergey.Ivanets@gmail.com

Artem P. Fesenko

ORCID 0000-0001-8730-3327

Department of Biomedical Radio-

Electronic Devices and Systems

Chernihiv National University of

Technology

Chernihiv, Ukraine

gudrunas.ch@gmail.com

Oleksandr M. Fesiuk

Department of Biomedical Radio-

Electronic Devices and Systems

Chernihiv National University of

Technology

Chernihiv, Ukraine

fesuks1@gmail.com

Abstract—The article describes a way to implement

operations on fuzzy sets using additional processor

instructions. As a target, a NIOS II soft processor is used. Due

to the hardware implementation of instructions, the speed of

their execution increases significantly. The integration of fuzzy

instructions into the NIOS II processor instruction set

simplifies the process of developing programs that use fuzzy

inference algorithms.

Keywords—fuzzy logic, FPGA, custom instruction, NIOS II.

I. INTRODUCTION

The idea of developing processors with fuzzy logic is
based on fuzzy mathematics. The mathematical theory of
fuzzy sets was introduced by L. A. Zade [1]. Since its
introduction, it was under intensive research and, as a result,
have opened wide opportunities for system analytics. Based
on fuzzy sets theory systems, correspondingly, have widened
the application of fuzzy logic. Unlike the traditional formal
logic, that operates with accurate and clear definitions such
as true and false, yes and no, zero and one, fuzzy logic deals
with values in certain analog or discrete range called
linguistic variables, for example, “far”, “close”, “warm”,
“cool”. Fuzzy logic control algorithms are called fuzzy
inference systems.

Fuzzy inference systems have been successfully applied
in fields such as automatic control, data classification,
decision analysis, expert systems, and computer vision.
Because of its multidisciplinary nature, fuzzy inference
systems are associated with a number of names, such as
fuzzy-rule-based systems, fuzzy expert systems, fuzzy
modeling, fuzzy associative memory, fuzzy logic controllers,
and simply (and ambiguously) fuzzy systems [2].

Embedded systems increasingly use FPGAs due to their
superior cost and flexibility compared to custom integrated
circuits [3]. FPGA systems often incorporate two types of
processors, soft and hard. Soft processors are implemented
using the fabric itself. Hard cores are fabricated separately
and could offer higher performance compared to soft
processors, but they are inflexible and wasted when not
needed. Accordingly, there is a need to develop soft cores
that provide high performance. The ways of improving the
performance of soft processors were researched in [1].
According to research, among different techniques of

improving the performance of soft processors, the most
effective one is hardware processor system extension
according to specific application domain. This approach is
capable of bringing up to 100x performance improvement.
There are two ways of implementing processor system
extension: custom peripherals and custom processor
instructions. Custom instructions approach if preferred way,
if performance increase is considered in [4].

II. FUZZY LOGIC

The typical structure of fuzzy inference system or fuzzy
controller includes the following components (Fig. 1):

 fuzzification unit;

 inference mechanism unit;

 rule base unit;

 defuzzification unit.

Fuzzification
Inference

Mechanism

Defuzzification

Rule

Base

x2

x1 y

Fig. 1. The structure of typical fuzzy controller.

That is, according to the structure, fuzzy logic controller
involves four main stages: fuzzification, rule base, inference
mechanism and defuzzification. Fuzzification unit is
responsible for converting real world crisp signals into fuzzy
values for further processing. The inference mechanism
determines the matching degree of the current fuzzy input
with respect to each rule and decides which rules are to be
fired according to the input field. Next, the fired rules are
combined to form the control actions [5].

During the fuzzification step, the current system input
values are compared against stored input membership
functions to determine the degree to which each label of each
system input is true. This is accomplished by finding the y-
value for the current input value on a membership function
for each label of each system input. A membership function

37

II International Scientific and Practical Conference
Theoretical and Applied Aspects of Device Development on

Microcontrollers and FPGAs
MC&FPGA-2020

shows the relationship between the precision (digital) input
value and the fuzzy variable. Membership functions can be
of various shapes, for example, triangular or trapezoidal (Fig.
2). The end result of the fuzzification step is a table of fuzzy
inputs representing current system conditions.

µ(y)

 255

 NB N Z P PB

 44 88 128 168 208 255 y

Fig. 2. Membership functions.

The use of piecewise membership functions is explained
by the simplicity of their hardware implementation. To
determine the trapezoid membership function (fig. 3), it is
necessary to use four points a, b, c, d.

 a b c d x

µ(x)

1

Fig. 3. Trapezoid membership functions.

Then the trapezoid membership functions will be
represented by the following system:



0,

,

() 1,

,

0,

x a

x a
a x b

b a

x b x c

d x
c x d

d c

d x





  

 



   

 

 





 

For the duration of fuzzy inference each rule is evaluated
sequentially, but the rules as a group are treated as if they
were all evaluated simultaneously. Two mathematical
operations take place during rule evaluation. The fuzzy AND
operator corresponds to the mathematical minimum
operation and the fuzzy OR operation corresponds to the
mathematical maximum operation. The fuzzy ABD is used
to connect antecedents within a rule. The fuzzy OR is
implied between successive rules. Before evaluating any
rules, all fuzzy outputs are set to zero (meaning not true at
all). As each rule is evaluated, the smallest (minimum)
antecedent is taken to be the overall truth of the rule. This
rule truth value is applied to each consequent of the rule (by
storing this value to the corresponding fuzzy output) unless
the fuzzy output is already larger (maximum). If two rules
affect the same fuzzy output, the rule that is most true
governs the value in the fuzzy output because the rules are
connected by an implied fuzzy OR.

Rule base in fuzzy controller consists of IF-THEN rules.
These IF-THEN rule statements are used to formulate the
conditional statements that comprise fuzzy logic.

A single fuzzy IF-THEN rule assumes the form:

if x is A then y is B

where A and B are linguistic values defined by fuzzy sets
on the ranges (universes of discourse) X and Y, respectively.
The IF-part of the rule “x is A” is called the antecedent or
premise, while the THEN-part of the rule “y is B” is called
the consequent or conclusion.

 IF Z1

IF Z1

IF P1

IF И P1

AND

AND

AND

AND

THEN

THEN

THEN

THEN

x1

x1

x1

x1

x2

x2

x2

x2

y

y

y

y

Z

N

N

NB

Z2

P2

Z2

P2

y

O
R

NB N Z

Fig. 4. Fuzzy inference.

Interpreting IF-THEN rules is a three-part process
(fig. 4):

1. Fuzzify inputs: Resolve all fuzzy statements in the
antecedent to a degree of membership between 0 and 1. If
there is only one part to the antecedent, then this is the
degree of support for the rule.

2. Apply fuzzy operator to multiple part antecedents:
If there are multiple parts to the antecedent, apply fuzzy logic
operators and resolve the antecedent to a single number
between 0 and 1. This is the degree of support for the rule.

3. Apply implication method: Use the degree of
support for the entire rule to shape the output fuzzy set. The
consequent of a fuzzy rule assigns an entire fuzzy set to the
output. This fuzzy set is represented by a membership
function that is chosen to indicate the qualities of the
consequent. If the antecedent is only partially true, (i.e., is
assigned a value less than 1), then the output fuzzy set is
truncated according to the implication method.

III. SYSTEM-ON-CHIP WITH NIOS II PROCESSOR

FPGA-based System-On-Chip (SOC) use processor
cores. With Altera/Intel FPGA we can use NIOS II soft
processor [6]. To work with this processor using the Quartus
Prime software we need to create a microprocessor system.
Figure 3 describes the functional diagram of simple
microprocessor system with NIOS II soft processor. In
addition to the NIOS II processor, the smallest system has a
timer (T), RAM and ROM for data and instruction, JTAG-
UART for debagging and download software and PIO for

38

II International Scientific and Practical Conference
Theoretical and Applied Aspects of Device Development on

Microcontrollers and FPGAs
MC&FPGA-2020

connecting external devices. All these modules are connected
by Avalon system bus (fig. 5).

Fig. 5. Functional Diagram of NIOS II System.

All computational operations are performed by the
NIOS II processor and NIOS II controls external devices
using the bus Avalon, which includes: the address bus (AB),
data bus (DB) and control bus (CB).

IV. CUSTOM INSTRUCTION SET

User instructions ("custom instruction") is the
instructions for the processor, which creates the user, which
allows to significantly accelerate the speed of operation of
the processor. For NIOS II processor have the ability to
create up to two hundred fifty-six of such instructions. To
implement fuzzy logic support in NIOS II, it is necessary to
implement such instructions in the processor:

 FUZZ – fuzzification for two inputs;

 RULE – calculation base of fuzzy rules;

 DEFUZZ – defuzzification.

When the fuzzification step begins, the current value of
the system input is in an accumulator of the NIOS II, one
index register points to the first membership function
definition in the knowledge base, and a second index register
points to the first fuzzy input in RAM. As each fuzzy input is
calculated by executing a FUZZ instruction, the result is
stored to the fuzzy input and both pointers are updated
automatically to point to the locations associated with the
next fuzzy input. The FUZZ instruction takes care of
everything except counting the number of labels per system
input and loading the current value of any subsequent system
inputs.

RULE instruction. Rule evaluation is the central element
of a fuzzy logic inference program. This step processes a list
of rules from the knowledge base using current fuzzy input
values from RAM to produce a list of fuzzy outputs in RAM.

The complete rules are stored in the knowledge base as a
list of pointers or addresses of fuzzy inputs and fuzzy
outputs. For the rule evaluation logic to work, there must be
some means of knowing which pointers refer to fuzzy inputs
and which refer to fuzzy outputs. There also must be a way
to know when the last rule in the system has been reached.

 One method of organization is to have a fixed
number of rules with a specific number of
antecedents and consequents.

 A second method, employed in Freescale
M68HC11 kernels, is to mark the end of the rule list

with a reserved value, and use a bit in the pointers
to distinguish antecedents from consequents [7].

 A third method of organization, used in the
Freescale HSC12, is to mark the end of the rule list
with a reserved value, and separate antecedents and
consequents with another reserved value [8]. This
permits any number of rules, and allows each rule
to have any number of antecedents and
consequents, subject to the limits imposed by
availability of system memory.

These fuzzy outputs can be thought of as raw suggestions
for what the system output should be in response to the
current input conditions. Before the results can be applied,
the fuzzy outputs must be further processed, or defuzzified,
to produce a single output value that represents the combined
effect of all of the fuzzy outputs.

The defuzzification instruction (DEFUZZ) calculates the
value that best describes the fuzzy value of the output
linguistic variable. For defuzzification we use the center of
gravity method, sometimes called the center of gravity
method for singletons. The calculation of the sums required
by the method of the center of gravity turns out to be several
orders of magnitude faster than the numerical integration
required in the method of the center of the region:


1

1

,

p

i i

i

p

i

i

Y a

Y

a













 

where Yi is the value of the center of the maximum for the i-
th term;

ai - weight of the i-th term.

V. CONCLUSIONS

Custom instructions are one of the benefits of software
processors, as they are added directly to the processor core
and instruction set. Using custom instructions in NIOS II
processor significantly speeds up the operation of fuzzy
control algorithms and simplifies the task of writing
programs for such algorithms. This instructions increase
processor size in FPGA chip, but are one of the most
effective ways to speed up program execution.

REFERENCES

[1] L.A. Zadeh, “Fuzzy sets” Information and Control, Vol. 8, Issue 3,
pp. 338-353, June 1965, doi: 10.1016/S0019-9958(65)90241-X.

[2] J. Jantzen Foundations of Fuzzy Control: A Practical Approach. John
Wiley & Sons, 2013. 352 p.

[3] Proektuvannya komp'yuternykh system na osnovi mikroskhem
prohramovanoyi lohiky: monohrafiya / avt: V. V. Kazymyr, V. V.
Lytvynov, S. A. Ivanetsʹ. – Chernihiv: Chernihivsʹkyy natsionalʹnyy
tekhnolohichnyy universytet, 2013. – 305 s.

[4] Embedded Design Handbook. Intel Corp., 2020. – 497 p.

[5] C. C. Lee, "Fuzzy logic in control systems: fuzzy logic controller. I,"
in IEEE Transactions on Systems, Man, and Cybernetics, vol. 20, no.
2, pp. 404-418, March-April 1990, doi: 10.1109/21.52551.

[6] Nios II Custom Instruction User Guide. Intel Corp., 2020. – 66 p.

[7] HC11. MC68HC11F1. Technical Data. Freescale Semiconductors,
2004. 158 p.

[8] S12CPUV2 Reference Manual. HCS12 Microcontrollers. Freescale
Semiconductors, 2006. 452 p.

