
11

III International Scientific and Practical Conference
Theoretical and Applied Aspects of Device Development on

Microcontrollers and FPGAs
MC&FPGA-2021

DOI: 10.35598/mcfpga.2021.003

Using Benchmark Tests for Research State Memory

Encoding in Finite State Machine

Olga Zaichenko

ORCID 0000-0003-4936-2785
dept. Design and Operation of Electronic Devices

Kharkiv National University of Radioelectronics

Kharkov, Ukraine

olha.zaichenko@nure.ua

Pavlo Galkin

ORCID 0000-0002-0558-6448

dept. Design and Operation of Electronic Devices

Kharkiv National University of Radioelectronics
Kharkov, Ukraine

pavlo.halkin@nure.ua

Nataliia Zaichenko

ORCID 0000-0001-9798-7136
dept. Microelectronics, Electronic Devices and Apliances

Kharkiv National University of Radioelectronics

Kharkov, Ukraine

nataliia.zaichenko@nure.uа

Roman Tsekhmistro

ORCID 0000-0003-3628-3658

dept. Media Endineering and Information Radioelectronic

System
Kharkiv National University of Radioelectronics

Kharkov, Ukraine

roman.tsektmistro@nure.ua

Abstract—The synthesizer will automatically assign the

state memory codes based on the most effective use of the

target technology (e.g., binary, gray code, one-hot) in FPGA.

But exists alternative, when user by himself choose type of

memory encoding. There was considered user defined state

coding method for Quartus Altera.

Keywords—FPGA, finite state machine, state memory,

memory coding, synthesizer, one-hot, sequential, johnson,

optimization, speed of performance

I. INTRODUCTION

Finite state machines can be easily modeled using the
behavioral constructs in FPGA. Within the VHDL state
machine model, three processes are used to describe each of
the functional blocks: state memory, next state logic, and
output logic[1].

The model of the state memory of the FSM using a
process describes the behavior of the D-Flip-Flops in the
FSM that are holding the current state on their Q outputs.
Each time there is a rising edge of the clock, the current state
is updated with the next state value present on the D inputs
of the D-Flip-Flops. This process must also model the reset
condition. At all other times, the process will simply update
current_state with next_state on every rising edge of the
clock. The process model is very similar to the model of a D-
Flip-Flop. This is as expected since this process will
synthesize into one or more D-Flip-Flops to hold the current
state. The sensitivity list contains only clock and reset, and
assignments are only made to the signal current_state. The
following syntax shows how to model the state memory of
this FSM example.

The synthesizer will automatically assign the state codes
based on the most effective use of the target technology (e.g.,
binary, gray code, one-hot). But exists alternative, when user
by himself choose type of memory encoding.

The aim of the work is a comparative study of the
possibilities of using the state coding methods to reduce

increase the speed of the logic circuit of the finite state
automaton.

II. TYPES OF MEMORY ENCODING

There are variants of memory encoding. 1. "One-hot." A
separate trigger is used to encode each state. The number of
triggers is equal to the number of states of the machine. At
any given time, only one trigger can have a single value. To
form the value of each trigger, a logical equation is used, in
which the number of terms is equal to the number of
transitions to the corresponding state. 2. "Sequential". The
synthesizer finds long sequences of states in the machine,
consisting of unconditional transitions, and encodes the
states within them with consecutive binary codes of
minimum sufficient bit size. As a result, the address inputs of
the Look-Up Table (LUT) elements are not fed to the input
signals of the machine, and only the current state code is fed,
which usually has a small bit compared to the number of
input signals. Sequential state coding provides more optimal
filling of static memory cells of LUT elements and reduces
the number of unused cells. 3. Johnson. State coding is
performed using Johnson code. Each value of this code
contains only one continuous sequence of single bits, and
any two adjacent values in an ordered sequence of values
differ by only one bit. Johnson's code is a cyclic code with an
excess and reduces the number of electrical interference
caused by the simultaneous switching of several bits of the
register circuit. Thus, when using the Johnson code to encode
the states of the machine, the number of triggers involved
will be greater than in the case of sequential encoding. 4.
"Gray." State coding is performed using Gray code, in which
two adjacent values in an ordered sequence of values differ
in the value of one binary digit, and the number of bits
coincides with the number in the case of sequential coding.
Like Johnson's code, Gray's code should be used to encode
state chains, because each automatic transition in such a
chain will be accompanied by a change of only one bit in the
machine's memory register. 5. "Auto". The synthesizer
chooses one of the above coding methods at its discretion
based on the analysis of the VHDL description of the

12

III International Scientific and Practical Conference
Theoretical and Applied Aspects of Device Development on

Microcontrollers and FPGAs
MC&FPGA-2021

machine. The choice of coding method also depends on other
settings (for example, on the leading optimization strategy -
hardware costs or speed), but the generalized approach is as
follows: if the machine contains a small number of states,
one-hot coding is used; with an average number of states, the
Johnson code is used; with a large number of states, the Gray
code is used.

III. USING BENCHMARK TESTS FOR COMPARE SPEED OF

PERFORMANCE FOR DIFFERENT STATE MEMORY ENCODING

It is known the input project is synthesized into a circuit
that consists of logical elements of logical blocks in a FPGA.
Quartus converts a system description in one of the hardware
description languages (HDL from Hardware Description
Language) into a set of microcircuit-independent functional
and storage elements. After the synthesis is completed,
information can be obtained on the number of LUT-elements
and triggers required for its implementation, as well as the
estimated maximum frequency of operation [2].

The difficulty lies in the fact that the same project can be
placed in the FPGA in different ways, and there are millions
of these ways. Some placement and routing is better, others
are worse. The main criterion for the quality of the resulting
system is the maximum frequency at which the project can
operate with a given arrangement of elements and with a
given routing of links. It is influenced by the length of the
links between the blocks and the number of programmable
switches between them. To use advanced settings that impact
the synthesis of design it is necessary to access to settings.
To click Assignments > Settings > Compiler Settings >
Advanced Settings (Synthesis). The Optimization mode
setting enables various combinations of these settings to
achieve design goals.

.i 2

.o 1

.p 11

.s 4

-0 st0 st0 0

11 st0 st0 0

01 st0 st1 -

0- st1 st1 1

11 st1 st0 0

10 st1 st2 1

1- st2 st2 1

00 st2 st1 1

01 st2 st3 1

0- st3 st3 1

11 st3 st2 1

Fig. 1. Benchmarklion in KISS2 format [5]

As it turned out, not every program is suitable for the
analysis of efficiency, for example, the vending machine [1]
showed the same performance for all types of encoding. So
we had to turn to special state machines, benchmarks.
Benchmarks have their own names [2], for example, “lion”.
Their number will reach more than 50 pieces. Initially, they
are recorded in the KISS2 format (fig.1) The KISS2 format
is a very popular text format for describing the nehavior of a
control units. A KISS2 file is devided into two parts: header
and a state transition table. The header contains generic
parameters of control unit, i.e. the number of inputs, the
number of outputs, the number of states and the number of
terms.

.i <number of inputs>

.o <number of outputs>

.p <number of products>

.s <number of states used>

.r <reset state>
<input> <current-state > <next-state> <output>
.
.
.
<input> <current-state > <next-state> <output>

Fig. 2. Example of headers KISS2[4]

Due to application of TimeQuest Timing Analyzer from
Tools Menu Quartus Altera[7] there was estimated time of
performance for hybrid of finite state machine from[1] and
[5,6]. The results from Report Fmax Summary are for Auto
and One-Hot Encoding - 854.7MHz, for Sequential and
Minimal Bits 1000 MHz, .Johnson and Gray encoding 1001
MHz, which partially coincide with results from [2].

Fig. 3. Graph of the lion benchmark [6]

IV. CONCLUSION

One can use his own User-Encoded style, or select One-
Hot, Minimal Bits, Gray, Johnson, Sequential, or Auto
(Compiler-selected) encoding [3]. The best speed of
performance has one-hot encoding.

REFERENCES

[1] B. J. LaMeres, ”Introduction to Logic Circuits and Logic Design with
VHDL,” – Springer, 2019, 503 p.

[2] A. A. Barkalov, I. Ya. Zeleneva, E. R. Tatolov. "Analysis of the
efficiency of state coding methods in the synthesis of Mealy automata
on FPGA,” Science of the Donetsk National Technical University,
series of Problems of modeling and design automation, 2011, Vipusk
10 (197) pp. 1-6.(in Russian)

[3] Advanced Synthesis Settings Dialog Box. [Online]. Available:
https://www.intel.com/content/www/us/en/programmable/quartushelp
/17.0/mapIdTopics/mwh1465495270874.htm [Accessed: 10- Jun-
2021]

[4] A. Barkalov, L. Titarenko, M. Kolopienczyk, K. Mielcarek,
G.Bazydlo, Logic synthesis for FPGA-based finite state machines.
Springer, 2016.

[5] LGSynth93, International Workshop on logic synthesis benchmark
suite (LGSynth93).TAR, Benchmarks test. [Online].
Available:http://www.cbl.ncsu.edu:16080/benchmarks/LGSynth93/L
GSynth93.tar [Accessed: 10- Jun- 2021]

[6] H. Kubátová, “Finite state machine implementation in FPGAs”. In
Design of Embedded Control Systems Springer, Boston, MA. , 2005,
pp. 175-184

[7] Getting started with the TimeQuest Niming Analyzer [Online].
Available: https://www.youtube.com/watch?v=bFmTHLZ3DGs
[Accessed: 10- Jun- 2021]

https://www.intel.com/content/www/us/en/programmable/quartushelp/17.0/mapIdTopics/mwh1465495270874.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/17.0/mapIdTopics/mwh1465495270874.htm

