
35

IV International Scientific and Practical Conference
Theoretical and Applied Aspects of Device Development on

Microcontrollers and FPGAs
MC&FPGA-2022

DOI: 10.35598/mcfpga.2022.012

Practical Aspects of Software Optimization

for MCUs with RTOS

Ivan Shevtsov

ORCID 0000-0003-0597-1589

dept. Microprocessor Technologies and Systems

Kharkiv National University of Radio Electronics

Kharkiv, Ukraine
ivan.shevtsov@nure.ua

Valeriia Chumak

ORCID 0000-0002-2403-020X

dept. Microprocessor Technologies and Systems

Kharkiv National University of Radio Electronics

Kharkiv, Ukraine

valeriia.chumak@nure.ua

Iryna Svyd

ORCID 0000-0002-4635-6542

dept. Microprocessor Technologies and Systems

Kharkiv National University of Radio Electronics

Kharkiv, Ukraine
iryna.svyd@nure.ua

Anton Sierikov

ORCID 0000-0002-3917-2008

dept. Microprocessor Technologies and Systems

Kharkiv National University of Radio Electronics

Kharkiv, Ukraine

anton.sierikov1@nure.ua

Abstract—This paper is focused on some practical aspects

of optimization of MCU software written in C programming

language using RTOS. Machine-specific optimizations and

RTOS specific optimizations are described.

Keywords—optimization, RTOS, MCU, periphery.

I. INTRODUCTION

The task of optimizing MCU software often appears in
the process of developing and extending existing software.
Although there is a lot of information on C programming
language software optimization, the area of MCU software
optimization remains largely undescribed. RTOS software
optimizations are also extremely under-documented.

II. BEFORE OPTIMIZATION

The optimization process begins with searching for
bottlenecks. Bottlenecks are searched by profiler integrated
into debugger or by means of RTOS [1]. There are also IDE
plugins for RTOS profiling [2]. It is also possible to perform
profiling on your own.

When the bottlenecks are detected, it is necessary to
determine what place consumes so much memory resource
or processor time for a certain code fragment. In order to do
this, a more detailed profiling is performed, determining how
much time it takes to execute each function in a given code
section, until you get to the clean code and library functions
or system calls.

Understanding assembly code and architecture is
necessary to analyse why normal code (without system and
library calls) takes a long time to execute. For example, some
calculations can be done using floating point numbers, which
will take much longer than the same code using integer
calculations.

Bottleneck analysis in system and library calls is more
difficult because the source code is often unavailable.
Generally, this is solved by a detailed inspection of the
documentation. In some cases, it is possible to try to analyse
the assembler code. When the bottleneck is the usage of

libraries, there are the following solutions:

 rewrite the code without using third-party libraries, or
system calls;

 to use more optimized versions of libraries;

 to use calls which use fewer resources but give the
same or similar result.

III. OPTIMIZATION METHODS

A lot of information on optimization of programs for
MCU written in C can be found in open access [3, 4]. There
are also user's guides for program optimization for particular
compilers [5] and particular MCU [6]. Here will be described
some optimization techniques which are rarely described and
which give significant performance gain.

A. Machine-specific optimizations

Define abbreviations and acronyms the first time they are
used in the text, even after they have been defined in the
abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc,
and rms do not have to be defined. Do not use abbreviations
in the title or heads unless they are unavoidable.

1) Copy code and constants to RAM or other "fast"

memory: depending on the MCU architecture, this can

improve the code execution time. For example, in many

TMS devices of F28xxx family the speed of code execution

is lower from flash memory than from RAM. Also, the speed

of reading the constants from the flash memory, may have

latency in the absence of prefetch data mechanisms [3]. In

this case, can be recommended the placement of the most

frequently executed or time-critical functions, as well as the

constants associated with them in the RAM, additionally to

methods of code optimization. For various devices and clock

frequencies, this can give performance gains from 2.5% to

40% [7].

2) Intrinsic functions: Most microcontrollers

architectures provide intrinsic functions for simplifying and

increasing the performance of the most commonly used

36

IV International Scientific and Practical Conference
Theoretical and Applied Aspects of Device Development on

Microcontrollers and FPGAs
MC&FPGA-2022

tasks. For example, the Corterx-M4 kernel contains intrinsic

functions for byte and bit reordering, which are useful in

communication tasks [8]. There are also internal functions

for frequently occurring DSP addition/subtraction with

saturation.

3) Using more peripherals: One of the ways of

offloading the CPU is to use more peripherals. Modern

MCUs have a lot of peripherals which can do completely

different things for the CPU. It is also possible to change the

program, or algorithm, to make more usage of the

peripherals.

a) Copying data using DMA instead of CPU

resources: The C memcpy function in RTOS does not use

DMA, so in order to copy large amounts of data frequently, it

would be better to configure DMA.

b) Check-sum calculation: Many controllers have

built-in peripherals to calculate error detection codes - for

example CRC, or SHA-256. In case of need to increase

performance of controller, it is recommended to use them.

c) Usage of timers, or the built-in RTOS delay

functions, instead of using the C delay function: Often there

is a requirement of implementation delays in MCU

programming. For this purpose, you can use the function

delay, which implements the delay by means of CPU. It is

preferably to use RTOS facilities to implement delays (e.g.

vTaskDelay in FreeRTOS [9]), or the MCU's timers. To

implement delay accurately, it is necessary to use only the

MCU timer with interrupts at the end of the time interval.

4) Using fixed-point arithmetic instead of float-point:

Using fixed-point arithmetic (IQmath for example) instead of

floating-point arithmetic in many architectures can give a

performance gain, despite the fact that floating-point

computation in many MCUs is handled by the peripheral

coprocessor. At first look, it seems to contradict the previous

point, but with floating point math the CPU is forced to stay

idle while waiting for the operation to complete and for the

result to be available. Additionally, to this time is added the

time of copying values into the coprocessor registers and

copying the result. Often, this time is longer than performing

the same operation using fixed point arithmetic. Thus, it is

recommended to use integer math in heavily loaded parts of

the program. If it is impossible to refuse the floating-point

arithmetic (for example, the required functions are missing in

the library), it is possible to use optimized computation

libraries (such as Fast RTS for the C2000 architecture by TI)

or extension of the FPU - like TMU in C2000.

B. RTOS specific optimization

1) System calls cutting: One of the ways of optimizing

time-critical interrupts is to remove RTOS code from

interrupt begin and end. RTOS monitors the interrupt to

check if higher priority tasks that may have been released

during the interrupt operation are needed. If the interrupt

does not use RTOS calls then it can bypass RTOS and

interrupt hooks, profiling and other functions provided by

OC will not be available. In case of need to profile such

interrupts, it will be possible to use built in timers of MC by

implementing profiling functions yourself.

2) Place more code into task and only necessary code

into ISR: The main idea when placing code into interrupt

handlers is: "Place only necessary code into ISR". Moving

code between interrupts and tasks does not free up additional

CPU resources, but allows the device to be more responsive

to external impacts. However, if an interrupt is executed

more often than a task, it will free up CPU resources. Also, it

is worth actively using memoization, with the transfer of rare

calculations to low-priority RTOS tasks.

3) Refuse usage of FPU in interrupts, or tasks: The

usage of FPU coprocessor in applications with RTOS

involves the need of saving FPU registers in the task stack

and recovery (in addition to the ALU registers). For example,

in STM32F4 MCU FPU has 32 single precision registers

[10] (each 32-bits) that also have to be stacked in addition to

12 general-purpose registers and other registers. Such storing

and restoring is performed by the CPU, and could be done

every time tasks are switched and interrupts are entered. As

an intermediate optimization, it is possible to allocate usage

of FPU only in one handler of the program - a task, or

interrupt. In such case there is no need to save and restore

FPU registers, because other parts of the program will not

use the coprocessor. In addition to the previous point, it is

possible to move all resource-consuming calculations to low-

priority task and do them with FPU using floating point

arithmetic.

CONCLUSION

In this paper was described some optimization techniques
for MCU software which give significant performance gain.
Attention was focused on the optimizations related to the use
of RTOS.

REFERENCES

[1] Run Time Statistics [Online]. Available:
https://www.careeraddict.com/soft-skills [Accessed: 8- June- 2022]

[2] Stateviewer Plugin [Online]. Available:
https://www.highintegritysystems.com/tools/stateviewer/ [Accessed: 8-June-2022]

[3] Optimization of Computer Programs in C [Online]. Available: http://icps.u-
strasbg.fr/~bastoul/local_copies/lee.html [Accessed: 8-June-2022]

[4] Optimizing C For Microcontrollers [Online]. Available:
http://events17.linuxfoundation.org/sites/events/files/slides/Optimizin
g%20C%20For%20Microcontrollers.pdf [Accessed: 8-June-2022]

[5] TMS320C28x Optimizing C/C++ Compiler [Online]. Available:
https://www.ti.com/lit/ug/spru514y/spru514y.pdf?ts=1657715409563
[Accessed: 8-June-2022]

[6] Optimizing C Code for Size With MSP430™ MCUs: Tips and Tricks
[Online]. Available: https://www.ti.com/lit/an/slaa801/slaa801.pdf
[Accessed: 8-June-2022]

[7] Running an Application from Internal Flash Memory on the
TMS320F28xxx DSP [Online]. Available:
https://www.ti.com/lit/an/spra958l/spra958l.pdf [Accessed: 8-June-2022]

[8] Intrinsic Functions for CPU Instructions [Online]. Available:
https://www.keil.com/pack/doc/CMSIS/Core/html/group__intrinsic__
CPU__gr.html [Accessed: 8-June-2022]

[9] vTaskDelay [Online]. Available:
https://www.freertos.org/a00127.html [Accessed: 8-June-2022]

[10] Floating point unit demonstration on STM32 microcontrollers [Online].
Available: https://www.st.com/resource/en/application_note/dm00047230-
floating-point-unit-demonstration-on-stm32-microcontrollers-
stmicroelectronics.pdf [Accessed: 8-June-2022].

